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Abstract Enterprises and service providers are increasingly challenged with

improving the quality of service delivery while containing the cost. However, it is

often difficult to effectively manage the complex relationships among dynamic

customer workloads, strict service level requirements, and efficient service man-

agement processes. In this paper, we present our progress on building autonomic

systems for IT service management through a collection of automated data driven

methodologies. This includes the design of feedback controllers for workload

management, the use of simulation-optimization methodology for workforce man-

agement, and the development of machine learning models for event management.

We demonstrate the applicability of the presented approaches using examples and

data from a large IT service delivery environment.

Keywords IT service management � Autonomic computing � Feedback
control � Simulation-based optimization � Recommender system

1 Introduction

In recent years, the Information Technology (IT) service management industry has

faced continual pressure to improve service quality while simultaneously reducing

service delivery and management costs. These objectives are particularly critical for

IT service outsourcing, in which service providers manage the IT infrastructures,

applications, and business processes on behalf of their customers. To meet the needs

of the customers at reduced prices and an accelerated time to market, service

providers must efficiently tackle the scale and complexity of a managed IT
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environment as well as the diversity of processes across all of their outsourcing

customers.

In contrast to IT infrastructure management where the focus is on IT systems

such as cloud, networks, databases, and applications, IT service management is

concerned with the operational aspects of IT management and adopts a more

business and customer oriented approach to delivering IT services. The relationship

between IT infrastructure management and IT service management is illustrated in

Fig. 1. The left hand side indicates IT infrastructure and applications. The right

hand side indicates IT service management, which is labor intensive and comprises

a set of management processes and technologies that enables service providers to

manage the IT infrastructure and applications from the perspective of their

customers and of their own business.

The most adopted framework for IT Service Management is ITIL (Information

Technology Infrastructure Library) [1], which systematizes the planning, delivery,

and support of IT services. More specifically, ITIL adopts a five-stage service

lifecycle comprising Service Strategy, Service Design, Service Transition, Service

Operation, and Continuous Service Improvement. Each of them is organized by a

set of service management processes. The focus of Service Strategy is to understand

customer needs in order to provide the right mix of services to meet required

business outcomes. Service Design is aimed to design IT services to ensure high

quality service delivery and cost effective service provision. Afterwards, Service

Transition develops and transits the new or transformed services into steady-state

service delivery. Once at the steady-state, Service Operation is focused on achieving

effectiveness and efficiency in service delivery to ensure value for both customers

and service providers. Finally, Continuous Service Improvement emphasizes

creating and maintaining value for customers through better design and operation.

In a global service delivery context, the service provider manages global

customers’ outsourced IT Services such as operating networks, supporting

databases, and providing backup and restore services. The infrastructure supporting

the services may be owned by the customers and located on customer sites;

alternatively, it may be owned and located on provider sites on behalf of the

customers. As service requests arrive from the customers, the requests are assigned

IT Infrastructure and Applications  IT Service Management 

Fig. 1 IT service management
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to service agents in various service delivery centers that are also globally located to

both leverage qualified local skills and to provide round-the-clock support. On the

other hand, however, the global service provider needs to manage hundreds of

delivery locations, thousands of customers, and millions of service tasks. Such an

enormous complexity challenges the service provider to ensure that processes are

consistent across the whole services delivery environment and that high quality

services are uniformly provided to all service customers by all service agent teams.

During the execution of IT service management processes, IT service providers

track customer interactions and IT system performance, producing large volumes of

data. Such data present the opportunities for data driven analytics to produce

valuable insights and management actions for automated management of IT service

processes. Building automated systems for IT service management shares some

similar characteristics as building autonomic systems for IT infrastructure

management: operating self-managed systems based on high-level objectives from

the service owners, embracing a rigorous and model-based MAPE-K loop to

improve management efficiency and quality, and freeing service providers from the

burden of dealing with many low-level, yet vital, operational functions. On the other

hand, since IT service management is inherently a human management process,

human, as an important element, will be present both in the managed system and in

the managing system. Indeed, the objective of automated service management

systems is not to remove the human out of the loop, but to remove the ad-hoc

process out of the loop.

There are several benefits for building automated data driven systems for IT

service management. First, it lowers the complexity to integrate multiple

heterogeneous environments into customer support service systems. Second, it

enhances the IT service management best practices and processes by providing

automated solutions. Third, it reduces the level of skills needed to design, configure,

optimize, and maintain IT services. Finally, it improves consistency and repeata-

bility across different organizations and for different customers. On the other hand,

the challenges of building automated systems for IT service management lie in the

needs to manage high uncertainties from complex tasks and to deal with massive

data with large inaccuracies.

This paper summarizes the progress that we have made on building automated

data driven service management systems. We start from a relatively simple example

to dynamically adjust the size of the service delivery team in response to workload

changes. We achieve this by developing a feedback control mechanism and the

objective is to be able to have reasonable management performance given the high

uncertainties encountered in the service delivery data. Based on the initial success,

we further adopt the simulation-based optimization methodology to fully compre-

hend the different levels of complexities in service management. This involves a

discrete event simulation model that captures the relationships among dynamic

customer workloads, strict service level constraints, and service personnel with

diverse skill sets, as well as an optimization model to provide recommended staffing

levels with respect to the required skills and shift schedules. Finally, we discuss the

use of machine learning techniques to build an automated recommender system for

event management. This includes the extension of the k-nearest neighbors algorithm

850 J Netw Syst Manage (2017) 25:848–883

123



www.manaraa.com

in order to manage the complexities of understanding unstructured service data that

are text heavy.

The remainder of this paper is organized as follows. Section 2 discusses the

design of the feedback controller for workload management. Section 3 presents the

simulation-optimization methodology for workforce management. Section 4 pre-

sents the use of machine learning models for event management. Section 5 reviews

the related work. Our conclusions and future work are contained in Sect. 6.

2 Feedback Control for Workload Management

In this section, we describe an automated approach for workload management [2].

This supports the Incident Management process within ITIL’s Service Operation

lifecycle. The presented approach employs the feedback control methodology to

dynamically adjust the organization of service delivery personnel based upon the

observed gaps between measured and target service level metrics in response to the

changes in the business environment. Compared to existing feedback control

approaches used in systems management, the presented approach differentiates

itself by (1) devising a means to decompose the combined service level optimization

problem into a set of single-input single-output control problems with specific

service operation targets as reference inputs, and (2) designing an uncertainty-based

adaptive control approach that updates the control parameters without detailed

system models (which are typically difficult to obtain in a service delivery

environment).

We first discuss the workload management problem in IT service delivery and

present the architecture of dynamic workload management. Next, we describe the

design of the feedback control mechanism as well as uncertainty-based learning and

adaption. Finally, we demonstrate the effectiveness of the presented approach in an

IT incident management example that is designed based on a large service delivery

environment handling more than ten thousand service requests over a period of six

months.

2.1 Service Delivery Workload Management

A service delivery environment is generally organized as a set of service delivery

units, each servicing a subset of customers with similar needs and consisting of a

subset of service agents with similar skills. Assigning groups of customers to such

service delivery units allows service agents to develop familiarity with customers’

IT infrastructure and service requests. This helps to improve quality of service for

the service customers and achieve cost efficiencies for the service provider.

One challenge faced by the service delivery provider is to determine the optimal

size of a service delivery unit. An oversized service delivery unit results in low staff

utilization, while an undersized service delivery unit may encounter difficulty

achieving the service level targets. Furthermore, the customer workload varies over

time, which adds the complexity for rightsizing. Although some workload variations

may be predictable (for example, the banking industry has fewer service requests at
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the end of the year when the financial activity slows down), other variations are

driven by random factors. The changes in customer behaviors directly impact the

workload received by the service delivery units, and subsequently impact their

abilities to meet the service level agreements.

Thus, the goal of automated service delivery workload management is to be able

to automatically adjust the service delivery unit team size in response to the

customer workload changes. Such an adjustment is complicated by the fact that each

service delivery unit supports multiple customers with different service level

objectives. Furthermore, we need to consider the relationship among the service

delivery units when making the adjustment. Because we will not be able to get

additional service agents at any given time, the addition of service agents to one

service delivery unit necessarily means the reduction of service agents from one or

more other service delivery units.

We start from describing the architecture of the dynamic workload management

system, as shown in Fig. 2. The feedback controller dynamically assigns or

reassigns the service agents to the service delivery units, which handle the service

requests from various customers with customer specific service level targets.

Service level metrics are periodically measured from the service delivery units,

compared to the service level targets, and used by the feedback controller to adjust

service agent assignment in response to changes in customer workload.

There are three key modules of the dynamic workload management scheme:

service objective alignment, feedback controller, and adaptive design. The goal of

service objective alignment is to align the high level service level targets from the

customers with the low level service level metrics measured from the service

delivery environment. This helps to create the real time service operation targets for

the service delivery units based on the customers’ business objectives regarding

service level attainment (or average request resolution time, if specified by the

customers), rather than internal operational metrics such as agent utilization or

backlog length. The feedback controller operates to achieve the service operation

target by dynamically adjusting the assignment of service agents to service delivery

units. The adaptive design module takes the operational data regarding service agent

Service Delivery Unit Service Delivery Unit Service Delivery Units 

Customers 

Service 
Requests 

Feedback Controller Service Objective 
Alignment Service Measurement 

Service 
Agent 
Assignment 

Service Level Targets 

Service Level Metrics 

Adaptive Design 

Control 
Parameters 

Service 
Operation 
Target 

Fig. 2 Architecture of dynamic workload management
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assignment and service level metrics as input, and outputs the control parameters for

the feedback controller to provide appropriate control performance (i.e., quick

response to workload changes while not overreacting to system noise).

2.2 Uncertainty-Based Adaptive Control

Following the architecture discussion above, we describe the design of the dynamic

workload management system in detail. This includes (1) service objective

alignment to decompose the control strategy for enabling single-input single-output

control, (2) feedback control rule construction to adjust service agent assignment

based upon feedback from the service level metrics, and (3) adaptive controller

design to configure control parameters with minimal modeling effort.

2.2.1 Service Objective Alignment

Feedback controllers implement goal-driven algorithms to track a reference signal

and adjust the control input with the objective of minimizing the error between the

measured metric and the target reference. In the context of service delivery

workload management, the objective is to meet the service level targets from all

customers. Fundamentally, this is an optimization problem to minimize the

likelihood of missing the service level targets for any customer. Leveraging the

‘‘fairness’’ concept from load balancing, we define the management objective to

meet the service level targets equally well (i.e., to keep the same safety margin

between the targets and metrics) in order to increase the service resiliency of

unknown workload changes. This fairness objective can be further augmented

through weighting to consider customer differences (e.g., different service level

infringement penalties).

In the following discussion, we describe how feedback controllers can be used to

achieve fairness among a set of service level targets from multiple customers. The

key method is to decompose the combined targets so that they can be fulfilled by

multiple single-input single-output controllers.

Consider a service delivery environment that services M customers from N

service delivery units. For each service delivery unit i; i ¼ 1; . . .;N, we define a

service operation performance function

fiðSLiðkÞ; SL�i Þ ¼
XM

m¼1

wm SLi;mðkÞ � SL�i;m

� �
ð1Þ

where SL�i;m denotes the service level target of service delivery unit i with respect to

customer m, SLi;mðkÞ denotes the measured service level metrics at time interval k,

and wm indicates the weighting factor for customer m. The service level targets can

be in the format of the average service request completion time or in the format of

the percentage of the service requests that can complete their service within a

predefined time interval.

We design the controller to achieve ‘‘fairness’’ among all service delivery units,

that is,
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fiðSLiðkÞ; SL�i Þ ¼ fjðSLjðkÞ; SL�j Þ ð2Þ

for all pairs of service delivery units i and j. This fairness objective can be achieved

by constructing a set of single input single output controllers, one for each service

delivery unit, with the common reference signal defined as

1

N

XN

j¼1

fjðSLjðkÞ; SL�j Þ ð3Þ

and the control error for controller i as

eiðkÞ ¼ fiðSLiðkÞ; SL�i Þ �
1

N

XN

j¼1

fjðSLjðkÞ; SL�j Þ ð4Þ

Thus, the objective of the feedback controller is to drive the control error eiðkÞ to
zero using the following feedback control law

DuiðkÞ ¼ uðk þ 1Þ � uðkÞ ¼ Ki eiðkÞð Þ ð5Þ

where uiðkÞ denotes the control input (the number of service agents in service

delivery unit i). Note that the control law in Eq. (5) looks similar to the integral

control law that is used in proportional-integral-derivative (PID) controllers [3].

Although both forms aim to eliminate steady-state errors, the difference is that Kið�Þ
represents an integral function instead of an integral gain, as in the PID controller.

This increases the design flexibility, as we will discuss in the following sections, so

that we can design the controller directly based on system behaviors and uncer-

tainties. Such a design is generally simpler than building the difference equation

models through system identification, a design that is more involved and has a

higher data quality requirement (which is typically lacking in service delivery).

2.2.2 Feedback Control Rule

Although a rich set of controllers has been studied in control literature, the majority

are model-based and require extensive modeling and model-based adaptation [4, 5].

Instead, we leverage a simple yet effective control rule based on the Bang-Bang

logic. A Bang-Bang (on–off) controller is frequently used in optimal control where

the control input is restricted between an upper bound and a lower bound, and an

optimal solution is to switch between the control bounds [6]. We apply the Bang-

Bang controller due to the coarse granularity of service agents (i.e., they can only be

moved in increments of full individuals) and the restricted size of the service

delivery units. This makes an on–off controller more applicable, compared to other

continuous or discrete control laws.

Figure 3 depicts the operation of the Bang-Bang control law for controller i. The

x-axis denotes the control error eiðkÞ and the y-axis denotes the change in the control
input DuiðkÞ. A dead zone is defined so that no control input adjustment is given if

the control error is between �di and di. If the control error exceeds the dead zone,
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the control input is adjusted by step size si. In the case of a positive error (that is,

service delivery unit i performs worse than average and performs worse than all

service delivery units) the Bang-Bang control law will increase the control input

(i.e., add service agents) to reduce the deviation. When control input dependency

exists (e.g., the number of service agents assigned to each delivery unit must be

positive and the total number of service agents assigned to all delivery units must

equal the total number of service agents available), a projection algorithm can be

applied.

2.2.3 Adaptive Design

The performance and effectiveness of the above Bang-Bang controller is determined

by the careful selection of three control parameters: control interval (T), deadzone

size (di), and step size (si). While Bang-Bang control is widely used in optimal

control with rigorous analysis [6], considering the unique complexity and nature of

IT service management, we devise a simple and yet effective adaptive design

approach that does not rely on detailed modeling and can react to system

uncertainties commonly encountered in service delivery.

In a services delivery environment, sources of system uncertainty include the

following: (1) System Randomness: Service requests are generated at random times

and with different levels of complexity. Furthermore, much of the measured data in

a service delivery environment depends upon accurate recordings from service

agents. Experience has shown that this data does not always reflect real events with

perfect precision, due to the discrete (and unpredictable) nature of human beings;

(2) Transient Dynamics: There are often lags between the time when the events

occur and the time when the metrics are measured, which introduces uncertainty as

to the true state of the system during the transient phase. For example, after the

service agent moves to a different service delivery unit, it will take some time for

the agent to settle down, so that a performance lag will be observed before the

service level metric improvement is actually realized and reported; (3) Workload

Variation: Both system configurations (e.g., assignment of customer accounts to the

service delivery units) and workload behaviors (e.g., service request arrival rate per

customer, service rate at which service agents handle service requests) can vary over

ei(k)

ui(k)

di-di

-si

si

Fig. 3 An illustrative of the
Bang-Bang control law
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time. Thus, robustness and adaptability are desired for a feedback controller that

operates in a real environment.

By using the Bang-Bang control logic and the three control parameters defined

above, we design the adaptive feedback controller to accommodate these sources of

system uncertainty.

Control Interval We determine the control interval from the perspective of

understanding and managing system randomness. Intuitively, if data variability is

high, a larger control (sample) interval is required to ensure meaningful service

measurement and control. According to the Central Limit Theorem, the distribution

of the sample average of random variables approaches the normal distribution with a

mean equal to that of the parent distribution and variance equal to that of the parent

divided by the sample size (N), irrespective of the parent distribution.

For an initial control interval T0, we measure the service level metrics SLiðkÞ and
calculate the mean lSLi and the standard deviation rSLi . Given the desired noise ratio

r ¼ rSLi
lSLi

from the control designer, we can compute the control interval (T) as

follows:

r�SLi ¼rlSLi ¼
rSLiffiffiffiffiffi
Ni

p ð6Þ

T ¼T0 maxNi ð7Þ

Based on experience, we set r ¼ 0:1 to balance the feedback controller between

sensitivity to system randomness and ability to adapt to workload changes.

Dead Zone Size The dead zone is used to increase controller robustness to system

randomness and workload variation. Since the impact of system randomness cannot

be entirely eliminated using control interval selection, the dead zone is introduced to

avoid control oscillation, especially around the optimal steady state when the

control error appears small. A dead zone is also valuable when the control input has

a coarse granularity. For example, service agents can only be reassigned in

increments of full individuals, even if the theoretical optimal value indicates a

fractional adjustment. We design the dead zone size as follows:

di ¼ llSLi ð8Þ

where l is the threshold limit that makes the dead zone size proportional to the

average of the service level metric. Typically, we choose l ¼ 2r, with the objective

that no control action should be reacting to system randomness. Generally, a larger

threshold limit can reduce oscillation but may also lead to a larger steady state error.

Step Size The step size is related to the speed of the controller convergence. A

larger step size results in a faster controller response regarding workload variation,

but may cause the controller to oscillate around the optimal point with control error

bouncing around the dead zone. Conversely, a smaller step size leads to a longer

convergence time. From our experience, we choose an initial step size s equal to 5%

of the control range (the number of service agents in the service delivery unit).

If the step size is too large and causes oscillation around the dead zone, we

introduce an oscillation-induced adaptation algorithm to resize the dead zone, as
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follows: (1) Observe the control input history and record the sign of control input

change; (2) If an oscillation pattern is detected (e.g., the number of increases is

equal to the number of decreases, e.g., 1;�1; 1;�1), increase the dead zone size by

20%; (iii) If a chasing pattern is detected (e.g., 1, 1, 1, 1, or �1;�1;�1;�1),

decrease the dead zone size by 20%.

2.3 Model Evaluation

Our evaluation is based on the incident management data collected from a large

service delivery environment over a period of six months, including more than ten

thousand service requests. Each incident service request includes details about the

incident arrival time, service time, and completion time. A separate data source

provides the service level agreement information with the target service response

time and target service level attainment.

We analyze the service requests in order to characterize the workload. (For the

purposes of this evaluation, some workload parameters have been modified to

ensure sensitive business data are not revealed.) Our objective is to build a service

testbed (simulator) based on a set of queueing models (specifically, M/M/m models

[7]), that are calibrated using the collected service request data. We use the model to

represent the dynamic behavior of the service delivery environment and examine

how the presented controller can be used for dynamic service agent assignment.

Table 1 lists the workload parameters for our evaluation. The workload arrives

from four customers. The inter-arrival times of the service requests follow

exponential distributions, as approximated from the collected data. We evaluated

goodness-of-fit using the Kolmogorov–Smirnov test where the test statistic, the least

upper bound for the cumulative distribution function, is 0.17 for the exponential

distribution, compared to, for example, 0.28 for the normal distribution, and 0.70 for

the lognormal distribution. Table 1 also summarizes the workload distribution

across the two service delivery units. In addition, the average service time per

service request is 62.2 min in service delivery unit 1 and 123.9 min in service

delivery unit 2. These service times follow exponential distributions as well. The

target service response time is 8 hours for all service requests, and the service level

attainment target is 95% for all customers in each of the service delivery units. This

is a simplification used in this queueing model; in a separate effort, we are building

a discrete event simulation model for better representation. There is a total of 20

service agents in the two service delivery units. The control decision to be made in

Table 1 Workload parameters from an IT incident management example

Customer 1 Customer 2 Customer 3 Customer 4

Inter-arrival time (min) 14.2 45.4 177.1 20.1

Service Delivery Unit 1 (%) 92.5 83.8 64.4 82.1

Service Delivery Unit 2 (%) 7.5 16.2 35.6 17.9
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each control interval is the allocation of service agents to each of the service

delivery units, with the objective of fairly meeting the service level attainment

targets.

Figure 4 displays the performance of the presented feedback control mechanism.

The initial response is shown in Fig. 4a. The top and middle plots show how the

service agents and the service attainment levels converge. The bottom plot displays

the control error (the solid line) and the dead zone (the two dashed lines). As the

control error enters the dead zone, no more service agent adjustments are performed.

Figure 4b displays the controller performance when the workload changes at

interval 10. The workload distribution between service delivery units 1 and 2

changes to 62.5 and 37.5%, respectively, for customer 1. This could occur, for

example, if customer service requests follow seasonal patterns, or if the service

delivery provider changes the assignment of customers (or types of customer service

requests) to service delivery units. The controller begins with the optimal setting

from Fig. 4a. When the workload changes, service attainment increases for service

delivery unit 1 since fewer service requests arrive, prompting the controller to shift

service agents to service delivery unit 2. After measuring the service level metrics,

the controller modifies the service agent allocation to nine service agents in service

delivery unit 1 and eleven service agents in service delivery unit 2.

Overall, the proposed control mechanism successfully balances service level

attainment across service delivery units, both when the workload pattern is

stationary over time and when the workload dynamically changes. Further,

appropriate choice of step size combined with dead zone definition prevents the

controller both from oscillating and from responding to system noise.

2.4 Lessons Learned

The design of the above service delivery workload management system follows the

monitoring, analysis, planning, and execution (‘‘MAPE’’) model from autonomic
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where each interval is 10 days. The y axes indicate the number of agents in the top plot, the service level
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computing. It demonstrates the possibility of building autonomic systems for IT

service management using a similar feedback control structure for IT infrastructure

management. However, beyond the similarity at the principle level, a properly

designed autonomic service management system needs to consider the significant

uncertainty in a service delivery environment and respond to it accordingly (e.g.,

through an uncertainty-based adaptive control design as presented in this section).

Furthermore, building autonomic systems for IT service management needs to

consider the real complexity of IT services and service agents, if it is to be used for

complex decision making, which will be illustrated in the next section.

3 Simulation-Based Optimization for Workforce Management

In this section we describe an automated approach for workforce management [8].

This supports the Capacity Management process within ITIL’s Service Design

lifecycle. The presented approach employs the simulation optimization methodol-

ogy to provide recommended staffing levels that balance the conflicting needs

associated with dynamic customer workload, strict service level constraints, and

service personnel with diverse skill sets. Compared to the autonomic workload

management approach discussed in the previous section, the presented approach in

this section differentiates itself by focusing on off-line service delivery team

composition to determine both the agent number and agent skills required in each

service delivery unit to respond to different types of service requests, as well as the

shift schedules that the service agents must follow. Such decision making involves

much more complexity in the decision variables and the optimization constraints, as

compared to the real time workload management in regard to reassigning the agents

from one service delivery unit to another.

We start the section by describing the simulation optimization model in detail.

Afterwards, we demonstrate the effectiveness of the presented approach in an IT

service delivery environment. Indeed, the extension of the presented simulation

optimization framework has been implemented and deployed at a large services

delivery provider with worldwide delivery locations and global customers.

3.1 Simulation Optimization Model

We define the staffing level as the number of service agents within the service

delivery unit, the shift schedule of the service delivery unit with respect to which

agent works on what time, and the required agent skill profile in order to resolve the

customer service requests. The goal of the workforce management is to find a

minimal staffing level with respect to the agent cost and, at the same time, be able to

resolve the customer service requests within the service agreements. That is, the

objective of the simulation optimization model is to minimize the total staffing

related variable cost while considering the contractual service level constraints, the

skills required to respond to different types of service requests, and the shift

schedules that the service agents need to follow.
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There are a number of complexities in a service delivery system that need to be

considered properly. First, the number of classes of requests arriving to the system is

large, since the requests are differentiated by the different attributes, and the request

arrival rates are non-stationary, varying over the hours of the day and days of the

week. Second, the agents from different service delivery units have different breadth

and depth of skills and are working on different shift hours. Third, the service target

time can be measured either against calendar hours or business hours; in the latter

case, a business calendar is required. Although complicated first principle models

(e.g., [9]) or queueing models (e.g., [10, 11]) can be built to approximate complex

systems, they lack the level of detail and accuracy to address the above complexities

encountered in the service delivery systems. It is due to these modeling complexities

as well as the inherent stochastic nature of the problem that we choose a simulation-

based modeling and optimization framework to determine optimal staffing levels.

We first define the basic elements and assumptions in our model. Next, we

specify the objective function and the constraints, and introduce the simulation

model that we use to characterize the delivery system operation. Finally, we discuss

the solution techniques. The notation used in this paper is summarized in Table 2.

Table 2 Notation for workforce management

i ¼ 1; . . .; I Set of customers

j ¼ 1; . . .; J Set of shift schedules

k ¼ 1; . . .;K Set of service delivery units

c ¼ 1; . . .;C Set of request complexities

p ¼ 1; . . .;P Set of request priorities

t ¼ 1; . . .; T Set of intervals in the workload horizon

l ¼ 1; . . .; L Set of intervals in the shift schedule horizon

r ¼ 1; . . .;R Set of staffing equality constraints

xjk Number of agents assigned to shift schedule j in service delivery unit k

xk Upper bound on the number of agents assigned to service delivery unit k

xk Lower bound on the number of agents assigned to service delivery unit k

xj Upper bound on the number of agents assigned to shift schedule j

xj Lower bound on the number of agents assigned to shift schedule j

ck Cost of agent in service delivery unit k

br Staffing equality constant for the r-th constraint

akr Staffing equality parameter for the r-th constraint at delivery unit k

vtipc Average volume of workload in period t for customer i with priority p and complexity c

sipc Average service time for customer i with priority p and complexity c

yjl 1 if shift j is staffed in period l

0 otherwise

�

aip SLA attainment target for customer i of priority p

wip SLA target time for customer i of priority p

mip SLA measurement period for customer i of priority p
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3.1.1 Definitions and Assumptions

Let i ¼ 1; . . .; I denote the set of customers. Let k ¼ 1; . . .;K denote the set of

service delivery units in which the service agents are organized. All agents within

the same service delivery unit have the same depth and breadth of skills (e.g.,

technical skills, customer environment familiarity) and can respond to the arrived

service request equally. Let j ¼ 1; . . .; J be the set of allowable shift schedules to

which agents could potentially be assigned. These shift schedules are ensured to

provide adequate customer service coverage (e.g., 24 by 7) and to satisfy the

regulatory requirements (e.g., total number of hours worked per week or

consecutive working hours per day).

Arriving service requests are classified by customer i, as well as by complexity

c ¼ 1; . . .;C based upon the skills required to respond to these requests. The request

complexity can be defined to have a one to one mapping to the service delivery unit

defined above; alternatively, a mapping table can be used for more complicated

mapping. The service requests are further distinguished by their priorities

p ¼ 1; . . .;P. We use priority to characterize the severity and urgency of the

service requests. The priority level specifies the order in which the arrived request

will be processed by the service agent.

Note that, given the complexity of the service delivery system, a sizable number

of parameters are used in the model formulation. However, we design the model so

that all required parameters can be commonly measured.

3.1.2 Objective Function and Constraints

The workforce management problem can be formulated in two different ways. The

first formulation includes both the staffing cost and the SLA violation cost in the

objective function and the goal is to minimize the sum of these two costs. This

allows the service delivery provider to trade between the cost of hiring additional

staff and the cost of incurring additional service quality penalties due to lack of

sufficient staffing. The second formulation only includes the staffing cost in the

objective function but models the service level agreement as a constraint that must

be satisfied.

Although mathematically feasible, the first approach is less likely to be adopted

by the service provider from the business point of view. Quality of service and

service level attainment are metrics that both service delivery providers and

customers monitor on a continual basis. Trading off staffing cost against service

level attainment does not consider the cost of good will and may very likely lead to

customer dissatisfaction. We therefore adopt the latter formulation and state the

optimization problem as follows:

min
XJ

j¼1

XK

k¼1

ckxjk ð9Þ
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s:t: fipðvtipc; sipc; yjl; xjk;wip;mipÞ� aip ð10Þ

xk �
XJ

j¼1

xjk � xk ð11Þ

xj �
XK

k¼1

xjk � xj ð12Þ

XJ

j¼1

XK

k¼1

akrxjk ¼ br ð13Þ

xjk � 0 ð14Þ

Equation (9) defines the staffing cost to be minimized where xjk denotes the

number of service agents organized in the k-th service delivery unit and assigned to

the j-th shift. We also define the cost variables ck as the unit cost per service agent

within the k-th service delivery unit (noting that the delivery units are organized

based on the depth and breadth of the skills and highly skilled agents generally

demand higher cost). The total staffing cost is summed over agents from all delivery

units at all shifts.

We consider the following two types of constraints: service level constraints and

staffing coverage constraints. Service level constraints, as defined in Eq. (10),

represent the service level objectives that must be satisfied. In a service delivery

environment, the service level objectives typically take on a form such as ‘‘no more

than 5% of priority 1 incidents reported each month can be resolved in more than 2

calendar hours.’’ We use aip to denote the attainment target associated with the class

of service requests from customer i with priority p, wip to define the SLA target

time, and mip to represent the measurement period. Due to the complexity of service

delivery operation, we use discrete event simulation f ð�Þ to compute the service

attainment level (or, more precisely, the service violation level) from a number of

factors [12].

We define vtipc as the volume of service requests arriving from customer i with

priority p and complexity c during the time period t. The variability in the arriving

workload is stochastic in nature over short periods of time but exhibits a repeating

weekly pattern. We model the arrival of workload as a non-homogeneous Poisson

process. That is, we assume the arrival rate follows a stationary Poisson arrival

process within each of one hour time periods for t ¼ 1; . . .; T (T ¼ 168) hours of the

week.

We note that some other temporal patterns also exhibit in the data (e.g., due to

quarterly or end of year changes). However, we choose not to consider these for the

following reasons: First, due to the dynamic nature of the service delivery

environment, it is typically difficult to obtain long periods of historical data that are

stable enough to derive the seasonal patterns. Second, although seasonal workload

patterns do exist, the service delivery units are typically able to use alternative

862 J Netw Syst Manage (2017) 25:848–883

123



www.manaraa.com

means (other than changes in staffing) to manage the end of quarter / end of month

peaks in workload. For example, certain non-demanding workload types (e.g.,

documentation update, knowledge transfer) can be scheduled during non-peak

periods. Third, scheduled overtime can be used to meet some excess demand during

periods of high demand, though overtime is not relied upon too extensively due to

either regulatory constraints or the already long shifts worked by agents. Finally, the

agents’ vacations are typically scheduled in consideration of these known seasonal

workload patterns. Thus, for example, more agents take vacation or holiday in

August or December when the volume of work decreases for many of the service

delivery units, and coincidently at the same time when most of the customers are on

vacation or holiday too. In summary, the weekly workload pattern has been shown

to be sufficient to satisfy our practical needs in the context of staffing optimization.

In addition to the workload volume, the simulation model also takes the request

service time sipc for customer i with priority p and complexity c. Similar to the

findings of [13] and supported by the theoretical work of [14], based on data

collected from many service delivery units we find that the distribution of the

service times is well modeled by a lognormal distribution. Finally, we use yjl to

denote the shift working hours for schedule j at period l; yjl ¼ 1 if shift schedule j is

staffed in period l and 0 otherwise (where l ¼ 1; . . .; L and L defines the periodicity

after which the schedule repeats itself).

Staffing coverage constraints, as defined in Eqs. (11–13), represent the restric-

tions on the staffing assignment. Equation (11) places restrictions on the number of

agents within each service delivery unit. For example, there may be a limited

number of high skilled agents available so that the maximum size of the ‘‘high skill’’

service delivery unit is limited. We use xk to state the upper bound of the number of

agents in delivery unit k; similarly, a lower bound xk is defined.

In some cases, there are constraints on the number of agents who must work in a

given shift. These may be ‘‘physical constraints’’ due to the configuration of the

delivery environment. For example, agents may be required to monitor consoles and

due to the physical layout of the delivery environment there is a minimum number

of agents who must be available to monitor the consoles irrespective of the

workload. In other examples, customer contracts may specify a minimum number of

agents who must be available during certain shifts. Equation (12) is used to capture

these constraints where xj and xj denote the upper bound and lower bound of the

number of agents in shift j.

Finally, there are cases where the number of agents from certain delivery units is

fixed or a mix of them is fixed, these are captured in Eq. (13) as equality constraints

where br defines the equality constant for the r-th constraint and akr defines the

corresponding coefficient for the k-th delivery unit.

3.1.3 Solution Approaches

The workforce management problem described in Eqs. (9–14) defines a feasible

region (or a search space) to find the optimal staffing levels. Considering the

implementation practicability, we adopt the intelligent search procedures inherent in
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the Scatter Search combined with Tabu Search metaheuristics (see, e.g., [15, 16]) to

find the optimal solution. This is because of the complexity of service delivery and

the fact that we rely on the simulation model to accurately represent the delivery

system dynamics. As such, we will not be able to use analytical techniques to

determine the feasibility of the evaluated solutions.

Scatter search originated from strategies for creating composite decision rules

and surrogate constraints. It generates a reference set of trial solutions, and improves

the solutions by joining solutions based on generalized path constructions in

Euclidean space. To enhance the convergence of scatter search, tabu search is

applied to recall the performance of proposed solutions that have been evaluated

and guide the search process. It ensures that solutions that have already been

evaluated will not be reevaluated, guides intensification or diversification of the

search, and leads the search away from a locally optimal solution.

The optimizer based on the above approaches makes no mathematical

assumptions for the functions within the feasible region. This makes it particularly

useful for solving the optimization problem with embedded simulation models,

where the solutions suggested by the optimizer are evaluated by the simulation

model for performance. Afterwards, the output of the ‘‘performance test’’ is returned

to the optimizer and forms a continual feedback loop.

The execution time of the optimization model depends on two factors: the

simulation time of each iteration and the number of iterations needed to converge to

the optimal state. For the workforce management problem, the simulation time is

mainly affected by the workload volume for each customer/priority group. This is

because the simulation needs to run long enough to make the SLA measurement

statistically stable. The number of iterations is mainly determined by the number of

service agents, the number of service delivery units, and the number of shift

schedules. The combination of them defines the optimization space. In our

experience, the convergence time is normally on the order of hours. Since workforce

management is typically part of strategic planning that occurs at a much slower time

scale (usually on the order of months), the convergence time is of limited concern.

3.2 Model Evaluation

We provide an experimental evaluation to illustrate how the presented simulation

optimization model can be be used to produce staffing decisions in a services

delivery organization. Our implementation is built on top of the AnyLogic

simulation software, which supports agent-based, system dynamics, and discrete

event simulation methodologies in an visual development environment [17, 18]. It

also provides several optimization packages (including Scatter Search and Tabu

Search that we are using) for Monte Carlo simulations. Using AnyLogic, we specify

and code appropriate constraints and performance criteria to yield a reasonable

feasible region and to quickly converge to an implementable solution. The

developed model is exported as a standalone Java application for users to run

models independently. Note that the data has been altered to preserve data privacy

and simplified for the illustration purpose, though the nature of day-to-day service

operations has been maintained.

864 J Netw Syst Manage (2017) 25:848–883

123



www.manaraa.com

We consider three types of service requests with different priorities: console

alerts, problem tickets, and ad hoc requests. In Table 3, we provide basic statistics

for these requests. The requests differ in their arrival rate distributions, service time

distributions, and service level objectives. The console alerts have the highest

weekly volume and most stringent service attainment target, and are serviced with

the highest priority. The problem tickets have a low volume but longer service time

and have the medium priority. The ad hoc requests have the highest average and

variability in the service time, but are serviced with the lowest priority.

We model the service time using a lognormal distribution. Initially, we model the

arrival rate using a stationary Poisson arrival process; afterwards, we use the non-

homogeneous Poisson process to capture the varying arrivals for each hour of the

week. We use this as an example to demonstrate the need of the simulation model

(compared to analytical models) since it can conveniently consider multiple

complex factors such as non-homogeneous Poisson process and agent shift

schedules.

Figure 5 displays the convergence path of the simulation optimization model.

The x-axis indicates the number of iterations (i.e., the number of solutions that have

been created and evaluated) and the y-axis indicates the total number of agents in

each solution. The oscillating line in the background shows all candidate solutions

from scatter search and tabu search (including both feasible and infeasible

solutions), the line in the middle shows the evolution of the best feasible solutions

(i.e., the ones that meet all constraints especially the service level constraints), and

the line at the bottom shows the minimum (but infeasible) solutions that have been

evaluated. The model starts from a random configuration and finds the first feasible

solution at the second iteration (it happens in this example, but generally the first

feasible solution may be found much later). The model converges after 102

iterations, during which 53 solutions have been evaluated and five of them are

feasible solutions. A solution only needs to be evaluated if the total number of

agents from this solution is smaller than that from the current best feasible solution

(i.e., below the line in the middle), even though the ones above the line also need to

be generated in order to construct the generalized path.

Figure 6 shows the per-shift staffing levels for the five feasible solutions found

during this optimization process. Each cluster of bars represents the number of

agents recommended for each shift, and the fifth column indicates the total number

of agents. The last cluster shows the optimal staffing configuration with 32 agents

distributed evenly across four shifts (i.e., eight agents per shift). The balanced shift

assignments reflect the stationary arrival of workload that we artificially assumed in

Table 3 Scenario of service

requests
Alerts Problems Ad hoc

Average weekly volume 6784 403 940

Average service time (min) 5.47 12.40 20.30

Stdev service time 3.46 11.77 23.48

Target response time (min) 10 30 60

Service attainment target (%) 99 95 95
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the beginning of this section. Further, the agents are, on average, fully utilized over

all of their available working hours.

Next, we use the non-homogeneous Poisson process to capture the varying

arrivals for each hour of the week. Figure 7 illustrates the volume of arrivals per

hour of the week. The x-axis indicates the hours in the week where hour 1 is the

hour between Sunday midnight and 1 am Monday morning. The y-axis indicates the

total volume of alert requests for the corresponding hour of the week. We run the

optimization model similarly to the last scenario. However, the new optimal

solution requires 64 service agents, twice of that under the stationary arrival

scenario. Examination of the staff utilization reveals low average utilization of

52.2% across all shifts. Apparently, the peaks and valleys as observed in Fig. 7,

even though not significant, do have a drastic impact on the staffing level. This is

because of the short target response times and strict service attainment targets, so

that many more agents are required to ensure that the service level agreements can

be met at the peak of the week.

Fig. 5 Convergence process of staffing configuration optimization
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3.3 Lessons Learned

As another example of building autonomic systems for IT service management, the

simulation optimization approach presented in this section determines minimum

staffing requirements while meeting contractual service quality commitments. The

approach utilizes discrete event simulation as the analysis module to capture the

complex relationships within a service delivery system, and scatter search combined

with tabu search as the planning module to find the optimal staffing level in a

complex global services delivery environment. Given the complexity in real service

delivery environments, a more complicated autonomic management system is

needed in contrast to the rather simple approach discussed in the previous

section. However, the presented simulation optimization model is designed with a

reasonable set of operational and demographic data, which lends its applicability in

integrating with actual service delivery decision making.

4 Recommender System for Event Management

In this section we describe an autonomic approach for resolution recommendation

[19]. This supports the Event Management process within ITIL’s Service Operation

lifecycle. The presented approach employs the topic-level feature extraction

technique over the event and resolution information from historical service requests

to recommend appropriate resolutions for incoming events. Compared to existing

approaches in IT service management and recommender systems, the presented

approach differentiates itself by (1) taking into account the false tickets often

generated by monitoring systems for intermittent conditions, (2) designing the topic-

level features to incorporate the resolution information into the similarity

measurement, and (3) using metric learning to learn a more effective similarity

measure.

We first overview the event management problem and the architecture of

resolution recommendation. Next, we discuss in detail our four approaches to

improvement the recommendation quality. Finally, we demonstrate the

0

1

2

3

4

5

6

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103109 115 121 127 133 139 145 151 157 163
Hour of Week

A
le

rt
 V

ol
um

e 
pe

r H
ou

r

Fig. 7 Volume of alerts per hour of the week

J Netw Syst Manage (2017) 25:848–883 867

123



www.manaraa.com

effectiveness and efficiency of the discussed methods through empirical evaluations

on three service data sets.

4.1 Service Monitoring and Event Management

Problem detection is the first step in the problem detection, determination, and

resolution workflow, which is usually conducted by the monitoring software to emit

events when anomalous behaviors are detected. Towards fully automated service

monitoring and event management, an automated response system provides an

effective and reliable means of ensuring that anomalous behaviors or degradation of

the vital signs of IT systems or workload are flagged, automatically analyzed for

being non-redundant and genuine, and finally automatically resolved or sent to the

system administrators with resolution recommendation.

Each event has several related attributes with values describing the system status

at the time the event is generated. For example, a CPU-related event usually

contains the CPU utilization and paging utilization information, and a capacity-

related event usually contains the disk name and the size of disk used/free space. An

event also contains a textual description of the service interruption, called the event

summary. When subsequent actions are needed to resolve the incident and bring the

service back to normal, the event summary will become the problem description of

an incident ticket (a.k.a., service request) to be acted upon by the service agent. A

problem resolution is also stored in the incident ticket as a textual description of the

steps taken to resolve the problem.

In this section, we describe a method that finds a resolution for an event by

making use of similarities between the events and previous resolutions of

monitoring tickets. From analyzing historical monitoring tickets collected from

three customers managed by a large service provider, we observe that there are

many repeating resolutions for monitoring tickets within the same customer.

Naturally, if the events are similar, their respective tickets will most likely share the

same resolution. Therefore, it is possible for us to design an automated system that

recommends the proper resolution for an incoming ticket based on its corresponding

event information and the history of the resolved tickets.

Figure 8 shows the architecture of resolution recommendation. We start from the

traditional k-nearest neighbors (KNN) algorithm [20]. It uses the attribute level

features to provide resolution recommendations for incoming tickets in event

management (Sect. 4.2.1). We use four approaches to extend the basic KNN in

order to improvement the recommendation quality. In our first approach

(LDABaselineKNN), we improve the traditional KNN for event similarity measure

by using the weighted KNN (WKNN) and introducing the topic level features

through the Latent Dirichlet Allocation (LDA) method (Sect. 4.2.2). The second

approach is used for handling the false tickets by using the Division method to

identify the false tickets for separate handling (Sect. 4.2.3) and the Probabilistic

Fusion method to incorporate an additional penalty for minimizing the misleading

resolutions (Sect. 4.2.4). Our third approach (CombinedLDAKNN) targets both the

event and the corresponding ticket resolution information with the top level features

(Sect. 4.2.5). Finally, our fourth approach introduces metric Learning with a
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labeling dataset when the ticket resolution category information is available

(Sect. 4.2.6).

4.2 Resolution Recommendation Using KNN-based Extensions

Given an incoming ticket, the objective of the resolution recommendation is to find

k resolutions as close as possible to the true one for some user-specified parameter

k from the historical tickets. Each historical ticket has attributes of categorical,

numerical and textual types. An incoming ticket is one that has no resolution

component. Moreover, tickets are encoded as feature-level attributes in which each

ticket is considered as a composition of attributes, and the similarity between tickets

is calculated as the sum of the attributes’ similarity according to Eq. (15), or topic-

level attributes in which each ticket is considered as a probability distribution of

topics extracted using approach described later.

4.2.1 Basic KNN-Based Recommendation

The recommendation problem is often related to that of predicting the top k possible

resolutions. A straightforward approach is to apply the KNN algorithm, which

Fig. 8 Architecture of resolution recommendation
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searches the K nearest neighbors of the given ticket (K is a predefined parameter),

and recommends the top k�K representative resolutions among them [21, 22]. The

nearest neighbors are indicated by similarities of the associated events of the tickets.

In this paper, the representativeness is measured by the number of occurrences in

the K neighbors.

Table 4 lists the notations used in this paper. Let D ¼ ft1; . . .; tng be the set of

historical monitoring tickets and ti be the i-th ticket in D, i ¼ 1; . . .; n. Given a

monitoring ticket t, the nearest neighbor of t is the ticket ti that maximizes

simðeðtÞ; eðtiÞÞ, ti 2 D, where simð�; �Þ is a similarity function for events. Each event

consists of event attributes with values. Let A(e) denote the set of attributes of event

e. The similarity for events is computed as the summation of the similarities for all

attributes. There are three types of event attributes: categorical, numeric and textual.

Given an attribute a and two events e1 and e2, a 2 Aðe1Þ and a 2 Aðe2Þ, the
values of a in e1 and e2 are denoted by aðe1Þ and aðe2Þ. The similarity of e1 and e2
with respect to a is

simaðe1; e2Þ ¼

I½aðe1Þ ¼ aðe2Þ�; if a is categorical;

jaðe1Þ � aðe2Þj
maxjaðeiÞ � aðejÞj

; if a is numeric;

Jaccardðaðe1Þ; aðe2ÞÞ; if a is textual;

8
>>><

>>>:

where Ið�Þ is the indicator function returning 1 if the input condition holds and 0,

otherwise. Let maxjaðeiÞ � aðejÞj be the size of the value range of a. Jaccardð�; �Þ is
the Jaccard index for the bag of words model [23], frequently used to compute the

similarity of two texts. Its value is the proportion of common words in the two texts.

Note that for any type of attribute, inequality 0� simaðe1; e2Þ� 1 holds. Then, the

similarity for two events e1 and e2 is computed as:

Table 4 Notations

Notation Description

D Set of historical tickets

j � j Size of a set

ti i-th monitoring ticket

rðtiÞ Resolution description of ti

eðtiÞ The associated event of ticket ti

cðtiÞ Type of ticket ti, cðtiÞ ¼ 1 indicates ti is a real ticket, cðtiÞ ¼ 0 indicates ti is a false ticket

A(e) Set of attributes of event e

simðe1; e2Þ Similarity of events e1 and e2

simaðe1; e2Þ Similarity of a values of event e1 and e2

K Number of nearest neighbors in the KNN algorithm

k Number of recommended resolutions for a ticket, k�K
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simðe1; e2Þ ¼
P

a2Aðe1Þ\Aðe2Þ simaðe1; e2Þ
jAðe1Þ [ Aðe2Þj

: ð15Þ

Clearly, 0� simðe1; e2Þ� 1. To identify the type of attribute a, we only need to scan

all appearing values of a. If all values are composed of digits and a dot, a is

numeric. If some value of a contains a sentence or phrase, then a is textual.

Otherwise, a is categorical.

4.2.2 Division Method

Traditional recommendation algorithms focus on the accuracy of the recommended

results. However, in automated service management, false tickets are unavoidable in

both the historical and incoming tickets [24].

Since overlooking a real system problem may have serious consequences, we

consider incorporation of penalties in the recommendation results. There are two

cases meriting a penalty: recommendation of a false ticket’s resolution for a real

ticket, and recommendation of a real ticket’s resolution for a false ticket. The

penalty in the first case should be larger since the real ticket is more important. The

two cases are analogous to the false negative and false positive in prediction

problems [22], but note that our recommendation target is the ticket resolution, not

its type. A false ticket’s event may also have a high similarity with that of a real one.

The objective of the recommendation algorithm is now maximized accuracy under

minimized penalty.

A straightforward solution consists in dividing all historical tickets into two sets

comprising the real and false tickets, respectively. Then, it builds a KNN-based

recommender for each set, respectively. Another ticket type predictor is created,

establishing whether an incoming ticket is real or false, with the appropriate

recommender used accordingly. The divide method works as follows: it first uses a

type predictor to predict whether the incoming ticket is real or false. If it is real, then

it recommends the tickets from the real historic tickets; if it is false, it recommends

the tickets from the false historic tickets. The historic tickets are already processed

by the system administrator, so their types are known and we do not have to predict

them.

The division method is simple, but relies heavily on the precision of the ticket

type predictor, which cannot be perfect. If the ticket type prediction is correct, there

will be no penalty for any recommendation result. If the ticket type prediction is

wrong, every recommended resolution will incur a penalty. For example, if the

incoming ticket is real, but the predictor says it is a false ticket, then this method

only recommends false tickets. As a result, all the recommendations would incur

penalties.

4.2.3 Probabilistic Fusion Method

To overcome the limitation of the division method, we develop a probabilistic

fusion method. The framework of the basic KNN-based recommendation is
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retained, with the difference that the penalty and probability distribution of the

ticket type are incorporated in the similarity function.

Let k be the penalty for recommending a false ticket’s resolution for a real ticket,

and 1� k that for recommending a real ticket’s resolution for a false one. k can be

specified by the system administrator based on the actual cost of missing a real alert,

0� k� 1. Larger k indicates a greater importance of real tickets. The penalty

function is

ktðtiÞ ¼
k; t is a real ticket; ti is a false ticket

1� k; t is a false ticket; ti is a real ticket

0; otherwise,

8
><

>:

where t is the incoming ticket and ti is the historical one whose resolution is

recommended for t. Conversely, an award function can be defined as

ftðtiÞ ¼ 1� ktðtiÞ. Since 0� ktðtiÞ� 1, 0� ftðtiÞ� 1.

Let cð�Þ denote the ticket type. cðtiÞ ¼ 1 indicates ti is a real ticket; cðtiÞ ¼ 0

indicates ti is a false ticket. Since t is an incoming ticket, the value of c(t) is not

known. Using a ticket type predictor, we can estimate the distribution of P[c(t)]. The

idea of this method is to incorporate the expected award in the similarity function.

The new similarity function sim0ð�; �Þ is defined as:

sim0ðeðtÞ; eðtiÞÞ ¼ E½ftðtiÞ� � simðeðtÞ; eðtiÞÞ; ð16Þ

where simð�; �Þ is the original similarity function defined by Eq. (15), and E½ftðtiÞ� is
the expected award, E½ftðtiÞ� ¼ 1� E½ktðtiÞ�. If ti and t have the same ticket type, we

can assume that a new ticket t and historical ticket ti are independent, i.e.,

P½cðtÞ; cðtiÞ� ¼ P½cðtÞ� � P½cðtiÞ�. Then, the expected penalty is

E½ktðtiÞ� ¼
X

cðtÞ;cðtiÞ20;1
P½cðtÞ� � P½cðtiÞ� � ktðtiÞ:

Since cðtiÞ is already fixed, substituting ktðtiÞ, we obtain

E½ktðtiÞ� ¼
P½cðtÞ ¼ 0� � ð1� kÞ; ti real ticket

P½cðtÞ ¼ 1� � k; ti false ticket

�

Note that all factors in the new similarity function are of the same scale, i.e., [0, 1],

thus 0� sim0ð�; �Þ � 1.

Given an incoming ticket t, the probabilistic fusion method needs to estimate the

distribution of P[c(t)]. The dividing method also has to predict whether t is a real

ticket or a false ticket. There are many binary classification algorithms for

estimating P[c(t)]. In our implementation, we utilize another KNN classifier. The

features are the event attributes and the classification label is the ticket type. The

KNN classifier first finds the K nearest tickets in D, denoted as DK ¼ ftj1 ; . . .; tjkg.
Then, P½cðtÞ ¼ 1� is the proportion of real tickets in DK and P½cðtÞ ¼ 0� is the

proportion of false tickets in DK .
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4.2.4 Representation of Monitoring Tickets

As shown in Sect. 4.2.1, attribute level features are used in the traditional KNN

algorithm for recommendation. However, attribute-level feature representation is

not interpretable and often contains a lot of noise.

Our observation indicates that each monitoring ticket describes the existing

problems (e.g., low capacity, high CPU, utilization) in service, and the associated

ticket resolution should be highly relevant to the problems. Table 5 presents some

sample monitoring tickets to demonstrate that it is better to use features

semantically capturing these problems, instead of attribute-level features, to

represent monitoring tickets.

In this section, we describe an application of Latent Dirichlet Allocation (LDA)

to feature extraction, which allows us to first extract hidden topics and then to

encode monitoring tickets using topic level features. LDA is a generative

probabilistic model of a document corpus. Its basic idea is that documents are

represented as random mixtures over latent topics, where each topic is characterized

by a distribution over words [25]. Following [25], LDA assumes the following

generative process for each document w in a corpus D of length M:

1. Choose h�DirðaÞ, where DirðaÞ is the Dirichlet distribution for parameter a
2. For each of the N words wn:

(a) Choose a topic zn �MultinomialðhÞ.
(b) Choose a word wn from pðwnjzn; bÞ, a multinomial probability condi-

tioned on the topic zn.

According to the graphical model, the total probability PðDja; bÞ of a corpus D is

given by

YM

d¼1

Z
pðhdjaÞ

YNd

n¼1

X

zdn

pðzdnjhdÞpðwdnÞjzdn ; b
 !

dhd ð17Þ

Learning the various distribution (the set of topics, their associated word proba-

bilities, the topic of each word, and the topic probabilities of each document) is a

Table 5 Tickets for explaining motivation of incorporating resolution information

Ticket Summary Resolution

1 The logical disk has a low amount of free space.

Percent available: 2 Threshold: 5

After deleting old uninstall files, the logical

disk has now over 10% of free disk space

2 The percentage of used space in the logic disk is

90%. Threshold: 90%

After deleting old uninstall files, the logical

disk has now over 15% of free disk space

3 File system is low. The percentage of available

space in the file system is 10%. Threshold: 90%

After delprof run, the server now has more

than 4gb of free space

4 The logical disk has a low amount of free space.

Percent available: 3 Threshold: 5

No trouble was found, situation no longer

persists
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problem of Bayesian Inference [25]. Topic probability distribution of a document is

commonly used as its feature vector.

Following are steps for using LDA for feature extraction in our work:

• Represent each monitoring ticket as a document by concatenating each attribute

after removing stop words and introducing tokenization.

• Using historical tickets to train an LDA model.

• Inference feature vectors using the trained LDA model for both incoming events

and historical monitoring tickets.

After those steps, monitoring tickets can be encoded as feature vectors and the

cosine similarity can then be applied to measure their similarities. Experiments in

Sect. 4.3 demonstrate that the algorithm performance based on topic level features

is better than that on attribute level features.

4.2.5 Incorporating the Resolution Information

In a K nearest neighbor search two types of historical tickets should be ranked

higher than others: those with resolutions that are highly relevant to an incoming

event and those with resolutions that are more prevalent. Table 5 presents four

tickets to demonstrate this point: the resolution from Ticket 1 should have a higher

rank than the one from Ticket 4 since the resolution from Ticket 1 is more

informative. Similarly, resolutions from Ticket 1 and Ticket 2 should have higher

ranks than the one from Ticket 3 because of their higher prevalence.

In Sect. 4.2.1, simðe; eðtiÞÞ is computed to find the K nearest neighbors of an

incoming event e, in which eðtiÞ is the event information associated with the i-th

ticket. To incorporate the resolution information, simðe; tiÞ (i.e., similarity between

an incoming event and the i-th ticket), rather than simðe; eðtiÞÞ, is used in the

algorithm. simðe; tiÞ can be easily computed since e and ti can be vectorized with the

same dimensions after using topic-level features. Experiments in Sect. 4.3

demonstrate the effectiveness of this proposed approach.

4.2.6 Metric Learning

According to our observation, topics extracted from the LDA model should have

different contributions to the similarity measurement since some topics contain the

major descriptive words about events while the others may consist of less

meaningful words. For example, Topic A (server wsfpp1 lppza0 lppzi0 nalac

application) contains more descriptive words than Topic B ( server hung condition

responding application apps), and thus should be assigned a larger weight. We adopt

metric learning [26] to achieve this goal.

The metric learning [27] problem aims at learning a distance function tuned to a

particular task, and has been shown to be useful when used in conjunction with

nearest-neighbor methods and other techniques that rely on distances or similarities

[28] as illustrated in Fig. 9. To facilitate the learning process, in metric learning, we

use a slightly modified form of Mahalanobis Distance function [26]:
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dAðx; yÞ ¼ xTAy: ð18Þ

In our work, we have n historical tickets t1; t2; . . .; tn and n corresponding

resolutions rðt1Þ; rðt2Þ; . . .; rðtnÞ. We consider the resolution categories as supervi-

sion for metric learning since intuitively similar resolutions solve similar issues. We

pre-calculate matrix R 2 Rn�n in which Ri;j ¼ simðrðtiÞ; rðtjÞÞ: Our goal is to learn a

similarity function SAðti; tjÞ by solving the following optimization problem:

f ðAÞ ¼ min
Xn

i¼1

Xn

j¼1

jjRi;j � SAðti; tjÞjj2 ¼ minjjR� SAST jj2; ð19Þ

in which we use SAðti; tjÞ ¼ ti
T � A � tj (ti and tj are feature vectors for ticket ti and

tj) instead of SAðeðtiÞ; eðtjÞÞ as we want to keep the benefits of incorporating the

resolution information into K nearest search. Since matrix A is constrained to be a

positive semi-definite (PSD) matrix, the projected gradient descent algorithm can be

directly applied to solve the optimization problem in Eq. (19). In each iteration of

gradient descent, the new updated matrix A will be projected into a PSD matrix as

the initial value for the next iteration. The singular value thresholding [29] has been

applied to project A into a PSD matrix by setting all A’s negative eigenvalues to be

zero.

The following is the gradient for Eq. (19):

rf ðAÞ ¼ rAððR� SASTÞTðR� SASTÞÞ ¼ 2STSASTS� 2STAS

The resolution categories are usually provided by system administrators. With the

available category information, the similarity between two resolutions is 1 if

rðtiÞ; rðtjÞ have the same category, and 0 otherwise.

Fig. 9 Before metric learning, vector x neighbors include instances from different classes; after metric
learning, its neighbors are all belong to the same class
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4.3 Evaluation

We show our experimental results from two perspectives. We first compare

experimental results from WKNN, Division, and Probabilistic Fusion to show the

effectiveness of our proposed methods in eliminating misleading resolutions, and

then compare experimental results from LDABaselineKNN, CombinedLDAKNN

and MLCombinedLDAKNN to show the efficiency of our proposed methods in

improving recommended resolutions’ relevance. We still show experimental results

between WKNN and LDABaselineKNN since they prove that topic level features

do not cause information loss compared to attribute level features. The LDABase-

lineKNN algorithm is the baseline for CombinedLDAKNN, which itself is the

baseline for MLCombinedLDAKNN. We use the Weighted KNN algorithm as the

underlying algorithm because it is the most widely used Top-N item-based

recommendation algorithm.

Experimental monitoring tickets are collected from three accounts managed by

IBM Global Services, denoted later ‘‘account1,’’ ‘‘account2’’ and ‘‘account3.’’ To

evaluate metric learning, 1000 labeled tickets with resolution categories are

obtained from ‘‘account1’’.

The following evaluation measures are used in our experiments.

Weighted Accuracy For each ticket set, the first 90% tickets are used as the

historic tickets and the remaining 10% tickets are used for testing. Hit rate is a

widely used metric for evaluating the accuracy in item-based recommendation

algorithms [30–32]. Here we define a recommended resolution as a hit if it has

Jaccard similarity greater than a threshold with the ground truth resolution.

Since real tickets are more important than false ones, we define another accuracy

measure, the weighted accuracy that assigns weights to real and false tickets. In this

evaluation, the importance weight of the real tickets k is 0.9 since the real tickets are
much more important than the false tickets in reality. We also test other large k
values, such as 0.8 and 0.99. The accuracy comparison results have no significant

change. As shown by Fig. 10a, our proposed two algorithms have smaller penalties

than the traditional KNN-based recommendation algorithms. The probabilistic

fusion method outperforms the division method, which relies heavily on the ticket

type predictor. Overall, our probabilistic fusion method only has about one-third of

the penalties of the traditional.
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Fig. 10 a Average penalty and b overall score for K ¼ 10 and k ¼ 3
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Average Similarity In general, several resolutions can be recommended for a

single testing instance. To consider the relativeness of all recommended resolutions,

the average similarity (avgSim) is used as one evaluation metric that is given by the

following equation:

avgSim ¼ 1

N

XN

i¼1

Xni

j¼1

simðrio; rjÞ=ni;

in which N is the number of testing instances, and ni is the number of recommended

resolutions for testing instance i and rio is its original resolution, and rj is its jth

recommended resolution. Jaccard Similarity is used to calculate simðrio; rjÞ.
Mean Average Precision We also assess Mean Average Precision (MAP) [33]

which is widely used for recommendation evaluation.

Evaluation on eliminating misleading resolutions An overall quantity metric is

used for evaluating the recommendation algorithms, covering both the accuracy and

the average penalty. It is defined as the overall score = weighted accuracy/average

penalty. If the weighted accuracy is higher or the average penalty is lower, then the

overall score becomes higher and the overall performance is better. Figure 10b

shows the overall scores of all algorithms for two parameter settings. It is seen that

our proposed algorithms are always better than the weighted KNN algorithm in each

data set.

To compare the results of each algorithm, we vary the number of recommen-

dation resolutions, k. When we increase the value of k, the size of the

recommendation results becomes larger. Then the probability of one recommended

resolution being hit by the true resolution also increases. Therefore, the weighted

accuracy becomes higher. Except for the division method, all algorithms have

similar weighted accuracies for each k. However, as k increases and there are more

recommended resolutions, there are more potential penalties in the recommended

resolutions. Hence, the average penalty also becomes higher. Clearly, the

probabilistic fusion method outperforms other algorithms for every k.

For other values of K ranging from 8 to 20, the comparison results are very

similar to K ¼ 10. Usually, we set K ¼ 10 and k ¼ 5 in practice. The choice of k is

a tradeoff between accuracy and a reasonable number of recommended resolutions.

Large k decreases user experience since system administrators have to choose a

proper one out of candidate resolutions, meanwhile small k greatly decreases

accuracy.

We select an event ticket in ‘‘account1’’ to illustrate why our proposed

algorithms are better than the traditional KNN-based algorithms. Table 6 shows a

list of recommended resolutions given by each algorithm. The testing ticket is a real

event ticket triggered by a low capacity alert for the file system. Its true resolution of

this ticket is as follows: ‘‘cleaned up the FS using RMAN retention policies...’’

RMAN is a data backup and recovery tool in the Oracle database. The general idea

of this resolution is to use this tool to clean up the old data.

As shown in Table 6, the first resolution recommended by WeightedKNN is a

false ticket’s resolution: ‘‘No actions were taken by GLDO for this Clearing

Event...’’ It might be caused by a temporal file generated by some application,
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which would clean up the temporal file automatically after its job was done. When

the system administrator opened that ticket, the problem was gone, and that ticket is

seen as false. However, the testing ticket is real and would not disappear unless the

problem was actually fixed. This resolution from the false ticket would have misled

the system administrator to overlook this problem. Consequently, a penalty of k ¼
0:9 is given to WeightedKNN.

WeightedKNN, Divide and Fusion all successfully find the true resolution of this

testing ticket, but WeightedKNN has one false resolution, so its penalty is 0.9. Our

proposed methods, Divide and Fusion, have no penalty for this ticket. Therefore, the

two methods are better than WeightedKNN.

Evaluation on Improving Accuracy Figure 11a shows the experimental results of

choosing the proper number of topics for training the LDA model using data set

‘‘account1’’. numTopics ¼ 300 is a proper setup for the number of topics. Thus, we

choose numTopics ¼ 300 for all the following experiments. The average similarity

is used for comparing the performance among WKNN, LDABaselineKNN and

CombinedLDAKNN. When resolution categories are available, MAP@n is used for

comparing the performance between CombinedLDAKNN and MLCom-

binedLDAKNN since it explicitly considers the relativeness of the recommended

results. To compare the results of each algorithm, we vary the number of

recommended resolutions, k. Topic level features are better than attribute level

features for account1 and account2 and slightly worse for account3 by comparing

algorithm WKNN and LDABaselineKNN. CombinedLDAKNN always outper-

forms LDABaselineKNN, which proves the effectiveness of incorporating the

resolution information into the K nearest neighbor search.

Metric Learning Performance Our analysis of the metric learning performance

showed that the similarity scores between monitoring tickets with resolutions from

Table 6 A Case Study for K ¼ 10 and k ¼ 3

Algorithm Recommended resolution Is

hit

Is real ticket’s

resolution

Penalty

Weighted

KNN

No actions were taken by GLDO for this

Clearing Event...

No False 0.9

I cleaned up the FS using RMAN retention

policies...

Yes True 0

Duplicated 28106883... No True 0

Divide Duplicated 28106883... No True 0

Another device failure has been reported for this

node...

No True 0

I cleaned up the FS using RMAN retention

policies...

Yes True 0

Fusion Duplicated 28106883... No True 0

Another device failure has been reported for this

node...

No True 0

I cleaned up the FS using RMAN retention

policies...

Yes True 0
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the same category are enhanced while similarity scores between monitoring tickets

with resolutions from different categories are reduced.

As shown in Fig. 11b, the overall MAP scores of MLCombinedLDAKNN are

also higher and more stable than CombinedLDAKNN when K increases. It indicates

that MLCombinedLDAKNN can retrieve more related resolutions first and thus is

more robust to noisy resolutions compared to CombinedLDAKNN, which proves

the effectiveness of metric learning.

4.4 Lessons Learned

In this section, we describe an example of building autonomic systems for IT

service management where the machine learning approach is used to determine

event resolution. The approach improves the peroformance of the KNN algorithm

by utilizing division and probabilistic fusion methods, as well as LDA for adding

topic level features combined with metric learning for added precision when data

are available. The complexity of service environments and limitations of the

historical data captured manually during delivery of the services, creates a necessity

for addressing often overlooked details such as the existence of False Tickets and

the absence of full detailed descriptions. However, as our experiments on the real

data demonstrated, the approaches described in this section are effective and

efficient in an automated resolution recommendation for monitoring tickets.

5 Related Work

Our work on building autonomic systems for workload management in IT service

systems is inspired by a class of workload management methods based on control

theory [3]. Various control-theoretic approaches have been used for performance

management of IT infrastructure from studying the behavior of dynamic systems

and feedback-driven control. Diao et al. [34] proposes a feedback control based

(b)(a)

Fig. 11 a Accuracy varies for different numTopics for dataset ‘‘account1’’ and b mean average precision
varying parameter K of underlying KNN algorithm
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approach to automated enforcement of service level agreements. Padala et al. [35]

develops an adaptive resource controller to meet application-level quality of service

goals in a data center environment. Lightstone et al. [36] studies the use of control

theory for database workload management. However, none of the above feedback

approaches have been applied to workload management in service delivery

organizations.

Our work on building autonomic systems for workforce management in IT

service systems is close to the so-called Skills Based Routing (‘‘SBR’’). The SBR

problem is known to be analytically complex with limited theoretical results. Aksin

et al. [37] provides detailed surveys of the analytical approaches that have been

undertaken. Common approaches are to simplify the topology of the network or

simplify the routing schemes. However, these are not desirable solutions in a service

delivery environment where both the network and the routing schemes are complex

and the service providers are seeking practical solutions rather than conceptual

guidance. An alternative solution methodology that has applied to the SBR problem

is a simulation-based approach. Atlason et al. [38] considers a multi-period problem

of determining optimal staffing levels and solving a sample average approximation

of the problem using a simulation based analytic center cutting plane method. Cezik

et al. [39] extends this approach by applying it to large problem instances and

developing heuristic methods to handle the numerical challenges that arise.

However, while vast literature exists for solving the SBR problem in the context of

manufacturing systems and call centers, very little research has been conducted in

service delivery systems due to the complexity of the customer workload. On the

other hand, there are various non-SBR problems solved in a service delivery system

related to the management of incidents, problems, and changes. Zia et al. [40]

proposes a change scheduling optimization model that can be solved using mixed

integer programming. Diao et al. [41] studies a rule-based approach for problem

ticket classification.

A substantial amount of research has been devoted to the recommendation

systems. The existing recommendation algorithms can be categorized into two

types. The first type is a learning-based recommendation, in which the algorithm

aims to maximize the rate of user response, such as user click or conversation. The

recommendation problem is then naturally formulated as a prediction problem. It

utilizes a prediction algorithm to compute the probability of the user response on

each item. Then, it recommends the one having the greatest probability. Most

prediction algorithms can be utilized in the recommendation, such as naive Bayes

classification, linear regression, logistic regression and matrix factorization [42].

The second type of recommendation algorithm focuses on the relevance of items or

users, rather than the user response. Many algorithms proposed for promoting

products to online users [43] belong to this type. They can be categorized as item-

based algorithms (e.g., [21]) and user-based algorithms (e.g., [44]). Metric learning

partially overcomes the difficulties of feature extraction and similarity measurement

in those domains. Metric learning requires learning a distance metric for the input

space of data from a given collection of a pair of similar/dissimilar points that

preserves the distance relation among the training data. In addition, many machine

learning algorithms, such as KNN, heavily rely on the underlying distance metric
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for the input instances. Previous work such as [45] has shown that appropriately

designed distance metrics can significantly benefit KNN-based algorithms compared

to the standard Euclidean distance.

6 Conclusions and Future Work

Enterprises and service providers are increasingly challenged with improving the

quality of service delivery while containing the cost. However, it is often difficult to

effectively manage the complex relationships among dynamic customer workloads,

strict service level requirements, and efficient service management processes. In this

paper, we presented our progress on building autonomic systems for IT service

management through a collection of automated data driven methodologies. This

includes the design of feedback controllers for workload management, the use of

simulation-optimization methodology for workforce management, and the devel-

opment of machine learning models for service event management. We demon-

strated the applicability of the presented approaches using examples and data from a

large IT services delivery environment.

IT service management is a rich research field with complex problems delivering

significant values. Despite the progress presented in this paper, building automated

data driven systems for IT service management still encompasses abundant

opportunities until it reaches its full potential. Continuous learning and optimization

will be at the core of building automated solutions that will shift IT service

management from mostly reactive to proactive modes of operation. The drive for

greater speed, quality, and consistency of IT service management, coupled with the

need to manage very complex environments at scale, has also called for an

integrated system that can incorporate deep analytics technologies over vast amount

of data with aggregated data sources across the whole service management

lifecycle. Such a continuous learning and integrated system will enhance the

relationship between service customers and service providers, shifting towards an

agile co-creation of automated data driven systems that achieve higher service

quality with reduced management cost.
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